Смеси углеводородов (пропана, пропилена, бутана, бутилена и небольших количеств этана и этилена), находящихся при относительно небольших давлениях или при пониженных температурах в жидком состоянии, а при нормальных условиях — газообразном, составляют группу сжиженных углеводородных газов. Их хранят и транспортируют в жидком, а используют в газообразном виде. Сырьем для производства сжиженных газов являются попутные нефтяные газы, жирные газы газоконденсатных месторождений и газы переработки нефти* Сжиженные газы могут иметь и искусственное происхождение.
Поскольку попутный нефтяной газ представляет собой многокомпонентную смесь из легких и тяжелых углеводородов, то задачей газобензинового производства является разделение этой смеси на следующие отдельные фракции:
Технология такого разделения основана на различной упругости насыщенных паров (рис. 1.2) и на различии в давлениях конденсации отдельных компонентов смеси. При изменениях температуры или объема такой двухфазной системы (пар — жидкость) равновесие ее нарушается и тут же восстанавливается. Например, при постоянстве температуры сжатие паровой фазы приводит к конденсации части паров, а при увеличении объема испаряется часть жидкости. В обоих случаях давление паровой фазы, соответствующее данной температуре, остается неизменным.
Аналогично при сохранении постоянства объема паровой фазы повышение температуры сопровождается испарением части жидкости с соответствующим повышением давления, т. е. упругости насыщенных паров углеводорода. Охлаждение двухфазной системы при неизменности объема влечет понижение упругости насыщенных паров.
Промышленными методами производства сжиженных газов являются компрессионный, адсорбционный и абсорбционный. Принципиальная сущность технологии этих способов может быть рассмотрена на упрощенных схемах соответствующих установок.
Компрессионный метод основан на различии давлений и температур конденсации отдельных компонентов смеси углеводородных газов, составляющих попутный нефтяной газ. В этом случае исходный попутный газ (рис. 1.3) после очистки в сепараторе 1 от взвешенных частиц нефти, влаги и пыли сжимается в компрессоре 2 до давления 17—20 кгс/см2 и затем последовательно охлаждается в конденсаторах 3 и 5. В процессе первой стадии охлаждения из смеси конденсируются и собираются в сепараторе сырого бензина 4 наименее упругие пары пентана, в конденсаторе 5 конденсируются пары пропана и бутана. После разделения в сепараторе 6 сконденсированные пропан и бутан поступают в емкости сжиженного газа, а сохранившие газообразное состояние метан и этан по газопроводу отбензиненного газа направляются к потребителю.
Адсорбционный (углепоглотителъный) метод основан на способности некоторых твердых пористых тел (активированного угля, силикагеля и др.) избирательно удерживать (адсорбировать) на поверхности пор и микропор тяжелые углеводороды и выделять их при последующем нагреве и увлажнении. Основным аппаратом адсорбционной установки (рис. 1.4) является адсорбер 1, заполненный активированным углем. Очищенный исходный попутный газ проходит в адсорбере снизу вверх через слой угля и насыщает его поры тяжелыми углеводородами, а легкие углеводороды — метан и этан, не осевшие в порах угля, выходят из адсорбера в газопровод отбензиненного газа. По окончании насыщения угля углеводородами через адсорбер сверху вниз подается водяной пар, который, нагревая и увлажняя уголь, осуществляет десорбцию тяжелых углеводородов и уносит их в виде паров. Пары воды и углеводородов проходят через конденсатор 2 и поступают в сепаратор 3, в нижней части которого скапливается конденсат водяного пара, над ним — более легкий конденсат пентана, а в паровом пространстве — пары пропана и бутана. Через регуляторы уровня вода из сепаратора сбрасывается в канализацию, пентан — в емкости сырого бензина, а пары пропана и бутана поступают под купол газгольдера 4. По мере скопления в газгольдере пары пропана и бутана сжимаются компрессором 5 до 17—20 кгс/см2 и после охлаждения в конденсаторе 6 накапливаются в виде конденсата в сепараторе сжиженного газа 7, а из него периодически перемещаются в сборные емкости.
Для восстановления адсорбционной активности угля его надо просушить и охладить. Для этого дутьевой вентилятор 8 нагнетает в адсорбер выбрасываемые через свечу 10 горячий воздух, нагреваемый в калорифере 9, а затем — холодный воздух, пропускаемый помимо калорифера. Непрерывность действия установки обеспечивается комплектованием групп адсорберов, по три в каждой. Это позволяет одновременно осуществлять в группе все основные операции: адсорбцию, десорбцию и регенерацию активных адсорбционных свойств угля.
Абсорбционный (маслопоглотителъный) метод основан на способности масел (например, солярового) в холодном виде избирательно растворять в себе (абсорбировать) тяжелые углеводороды, а при нагревании выделять их обратно.
Очищенный попутный нефтяной газ (рис. 1.5) поступает в нижнюю часть абсорбера 1, представляющего собой колонну с тарельчатыми насадками, в которой снизу вверх движется газ, а противотоком сверху вниз стекает по тарелкам масло. Конструкция тарелок обеспечивает хороший контакт газа с маслом, в результате чего масло растворяет основную массу тяжелых углеводородов. Легкие углеводороды поступают в верхнюю часть абсорбера и по газопроводу отбензиненного газа направляются к потребителю. Скапливающееся в нижней части абсорбера масло, насыщенное углеводородами, подается в подогреватель 2, затем десорбер 3. Выделяющиеся из нагретого масла тяжелые углеводороды поступают в компрессор 4, где сжимаются до 17—20 кгс/см2. Охлаждаются они в две стадии — в конденсаторах 5 и 7. После первой стадии в сепараторе 6 сырого бензина накапливается жидкий пентан, а в сепараторе 8 — сжиженная пропан-бутановая фракция. Освободившееся от углеводородов нагретое масло из нижней части десорбера 3 насосом 9 перекачивается через холодильник 10 в верхнюю часть абсорбера 1 для повторения цикла.
Из рассмотренных методов в газобензиновом производстве наиболее распространен метод масляной абсорбции, отличающийся простотой установки, большой производительностью и достаточно высокой степенью извлечения тяжелых углеводородов из исходных газов.
Источник: «Основы газоснабжения» Н.А. Скафтымов